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Abstract 
 

This paper presents an approach for automated test 
case generation using a software specification modeled 
in Statecharts. The steps defined in such approach 
involve: translation of Statecharts modeling into an 
XML-based language; and the PerformCharts tool 
generates FSMs based on control flow. These FSMs 
are the inputs for the Condado tool which generates 
test cases. The idea is to demonstrate that by using a 
higher-level technique, such as Statecharts, complex 
software can be represented with clarity and rich 
details. A case study was on an implementation of a 
protocol specified for communication between a 
scientific experiment and the On-Board Data Handling 
Computer of a satellite under development at National 
Institute for Space Research (INPE). 
 
1. Introduction 
 

Software for satellite’s on-board computers is 
reactive by nature, responding to stimuli known as 
events. Such software is complex due its close 
interaction with the computer hardware, sensors, 
actuators and other devices present in the satellite, and 
hard to be replaced in case of faults due to the 
unmanned aspect of the mission. Due to this fact, 
verification and validation play an important role 
during the whole software life cycle. 

Wrong interpretations of complex software from 
non-formal specification can result in incorrect 
implementations leading to testing them for 
conformance to its specification standard [1]. Besides, 
tests by introducing errors into input data, for example, 
are particularly important in order to see its behavior in 
the presence of non-specified events. In order to 
conduct both verification and validation or even to 

determine its performance, the software shall be 
represented formally to be handled through a computer. 
Finite State Machines (FSMs) [2] are popular, formal 
and are a natural choice to represent reactive systems. 
They consist of states (vertices) moving to other states 
by means of transition arcs (edges) triggered by events 
and are depicted through state transition diagrams. 
Several methods [1] and [3] have been proposed to 
generate test sequences from a FSM representation. In 
a similar way, if a reactive system is represented as a 
FSM and shown that it is a Markov chain, one can use 
an analytical approach to obtain performance measures 
[4]. 

Complex software usually deals with parallel 
activities. Representation of encapsulation would be an 
additional advantage. FSMs cannot explicitly represent 
such features, so, this leads to considering higher-level 
techniques. However, these techniques must be formal 
so that they can be computationally handled. At this 
stage, one has to bear in mind that a price has to be 
paid in order to deal with such specifications, as there 
might not be a straightforward solution to handle test 
sequences or performance evaluation. This means that 
this matter has to be evaluated by the user before taking 
a decision whether to use FSM or move to a higher-
level technique. It is expected that the decision, in most 
cases, will depend on the complexity of the system to 
be verified or validated. 

The focus of this paper is towards test sequence 
generation from a specification of a reactive system, a 
space application software, in Statecharts [5] and the 
use of PerformCharts [6]. In order to adapt 
PerformCharts to generate test sequences, it has been 
associated to a test case generation method switch 
cover implemented within the Condado tool [7]. A case 
study on a real satellite’s scientific experiment is 
explored to explain the overall process from 



  

specification to test sequence generation. The paper is 
organized as follows. Section 2 briefly explains both 
PerformCharts and Condado. Section 3 discusses how 
these tools have been integrated in order to deal with 
test sequence generation. Section 4 addresses the case 
study of a protocol implementation used for 
communicating a scientific experiment and the On-
Board Data Handling Computer (OBDH) of a Brazilian 
scientific satellite. Section 5 shows some results while 
section 6 concludes the paper. 

 
2. PerformCharts and Condado 
 

Statecharts extend state-transition diagrams with 
notions of hierarchy (depth), orthogonality (parallel 
activities) and interdependence/synchronization 
(broadcast communication) [5] and [8]. Statecharts 
consist of states, conditions, events, actions and 
transitions. Their subset  was used in performance 
evaluation [6]. Events are interpreted as: they can be: 
internal (or immediate) and triggered automatically 
(not explicitly stimulated) taking zero time when 
enabled; or external events that are stochastic (follow 
an exponential distribution) and are explicitly 
stimulated. Statecharts specification is converted into a 
Markov chain by: from an initial configuration (basic 
states of each orthogonal component in the initial 
instant), enabled immediate events are triggered and 
new configurations are obtained; for these new 
configurations, enabled stochastic events are stimulated 
yielding new configurations; once a configuration is 
obtained, internal events, if enabled, are triggered, 
firing transitions to yield new configurations; this 
stimulation goes on until all the configurations have 
been expanded. The result is a set where each element 
consists of a source configuration, stimulated stochastic 
event (along with its transition rate with exponential 
distribution), and the target configuration. This set is a 
Markov chain and when solved steady-state 
probabilities are obtained [4]. Figure 1(a) shows an 
example with three parallel components that 
correspond to two machines (E1 and E2) and a 
supervisor (Supervisor) to repair any eventual failure of 
the machines. The corresponding Markov chain is 
shown in Figure 1(b). 

Note that the number of configurations obtained 
(10) is less than the product (27) of the three machines 
in Fig.1. Details of the application of Statecharts in 
performance models can be seen in [6]. 

Statecharts specification is written in XML-bassed 
language PerformCharts Markup Language (PcML) [7] 
and scripts developed in Perl interpret PcML and 
generate a main program in C++ language that creates 

the necessary data structures to hold the specification 
and calls to methods to produce the Markov chain and 
its solution (steady-state probabilities). 

Condado is a test case generation tool for FSM. 
Condado stems from “control” and “data”. The control 
aspect is related to the valid sequences of events that 
the machine represents. The data aspect allows 
parameters of events to be generated. For the control 
part, Condado implements the switch cover method [3]. 
A switch is a transition-to-transition pair. The method 
generates test cases to cover all pairs of transitions in 
the model. State transition diagrams are directed 
graphs. Therefore, algorithms from graph theory can be 
used in order to traverse automatically.  

The algorithm implemented in Condado is known as 
sequence of  “de Bruijn”. The FSM of Figure 2(a) will 
help to illustrate the algorithm whose steps are:  

Step 1 – A dual graph is created from the original 
one, by converting arcs into nodes;  

Step 2 – By considering all nodes in the original 
graph, where there is an arc i arriving and an arc j 
leaving, an arc is created from i to j in the dual graph 
(Figure 2(b)); 

Step 3 – The dual graph is transformed into a 
“Eulerized” graph by balancing the polarity of the 
nodes. This balance is obtained by duplicating the arcs 
in such a way that the number of arcs arriving becomes 
equal to the number of arcs leaving the node. This 
“Eulerized” graph that corresponds to Figure 2(b) is 
shown in  Figure 2 (c); 

Step 4 – Finally, the nodes are traversed registering 
those that are visited, generating the following test 
sequences: abf, abrbf, cf, crbf. 

In order to use Condado, the FSM must be: a Mealy 
machine; initially connected; no need to be complete; 
and minimum, that is, does not contain redundant 
states. 

In order to keep the number of test cases 
manageable, the number of states and inputs must be 
kept small; otherwise, the number of test cases may 
explode. In the next section a method is presented that 
allows a reduced machine to be used as input to 
Condado. 

 
3. Integrating PerformCharts and 
Condado 
 

In order to use PerformCharts for test sequence 
generation, some additional elements from Statecharts 
such as Variables and Expressions have been included. 
PerformCharts is used in the same fashion as it is used 
for performance evaluation. 
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Figure 1. Statecharts representation. (a) System with two machines and a repairer; (b) Resulting 
Markov Chain 
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Figure 2. Condado algorithm. (a) FSM example; (b) Dual graph with arcs; (c) “Eulerized” Graph. 

 
However, the output is not a Markov chain (and the 

steady-state probabilities) but a state-transition 
diagram. The state-transition diagram, after being 
converted into a Prolog base of facts, is then fed to 
Condado tool so that test cases are generated to be 
executed at a later stage [7]. The FSM obtained from 
PerformCharts is provided in XML. Then an XSLT 
parser was used to generate the required base of facts. 
In a nutshell, the methodology to convert Statecharts 
specification of a software into test cases can be 
described in the following steps: (a)the system 
specification must be written in PcML, presented in 
section 2; (b)by using a Perl script, the PcML 
specification is converted into a text file containing the 
C++ main program; (c)a scenario is created by 
assigning values to the different fields  of a 
communication protocol frame. Each scenario has a 
unique FSM associated which is generated through the 
PerformCharts tool. As mentioned earlier, the Condado 
tool implements the switch cover method to generate 
test cases. In order to avoid test case explosion a 
solution has been adopted which assigns a value of 
zero to a selected event. The effect is that the transition 
associated to that event is not executed thereby 
producing a smaller machine; (d)the FSM generated by 

the PerformCharts must be written in the input format 
required by Condado tool. The output of the converted 
state-transition diagram in XML format is translated by 
using XSLT into the input required by Condado; and 
(e)finally, Condado tool generates the test cases for the 
system initially specified in Statecharts. 

4. Case Study 
 

In order to show the integrated use of Condado and 
PerformCharts for test case generation, a protocol 
specification [9] developed for the communication 
between a scientific experiment and the OBDH of a 
Brazilian scientific satellite has been chosen. The 
Implementation Under Test (IUT) is the command 
recognition component of the on-board software for an 
astrophysical experiment to be included in the   
Equatorial Atmosphere Research Satellite (EQUARS).   

Although the main focus of this paper is test case 
generation, tests created were executed in a simulated 
version of this experiment, developed in Java. The 
OBDH was simulated and executed in a different 
microcomputer. The communication is in master-slave 
mode, where the experiment is totally controlled by 



  

OBDH. The command message sent by OBDH to the 
experiment is composed of 6 fields: SYNC (EB9 
synchronization value), EID (experiment 
identification), TYPE (specifies accepted commands), 
SIZE (amount of Bytes in the DATA field), DATA and 
CKS (8-bit checksum). SIZE and DATA fields are 
optional and depend on the type of command. 

The command recognition component behavior of 
the communication protocol is shown in Figure 3. 
Table 1 provides some mnemonics to help its 
understanding.   

Referring to Figure 3, the initial configuration is 
(Idle, Waiting Sync). All fields of the command 
message are verified by the experiment through on-
board software. For instance, suppose a command sent 
to the experiment with these values was received 
exactly as it was sent (i.e. no data corruption during the 
command transmission): SYNC = EB9, EID = 2, 
TYPE = 03, CKS = 80. In the B macro-state, the event 
EB9 changes its sub-state to Waiting ExpId and the 
action starting timing counting makes the A state 
change from sub-state Idle to sub-state Counting Time. 
After the EB9, the eid rc[eid  = 2] event is triggered 
because EID = 2. The B state moves from Waiting 
ExpId to Waiting Type. As TYPE = 03, the event type 
rc [type >=01 and type <= 05] is triggered changing 
from Waiting Type to Waiting Checksum. Finally, as 
the value of checksum received was correct, the event 
cksum rc[cksum OK] is triggered and the B state 
switches from Waiting Checksum to Waiting Sync in 
order to wait for another command. Also, the action 
command received means the message was received 
and accepted by the experiment software. It also 
changes the A state from Counting Time to Idle. With 
this action, the timing counting is interrupted and the 
software is able to receive another command.  

If the software detects errors in any of the fields of 
the command message, the communication is aborted, 
the command is discarded and the experiment remains 
ready to receive a new command from OBDH. No 
message on problems in receiving a command is 
reported back to OBDH.  

 A timeout mechanism is implemented in both the 
computers depicted in state A. For example, if the time 
defined for receiving a whole command from OBDH 
expires, the waiting time expired [not in (Aborting)] 
event is triggered in state A and the action/event 
timeout will change the state B from Checking Field to 
Waiting Sync.   

Table 1 shows the values that can be assumed by the 
TYPE field (type and auxiliary variable tp) and those 
assumed by the DATA field (data). Also, from Table 1 
and Figure 3, it can be noticed that TYPE values 01, 

02, 03, 04 and 05 do not have the optional fields SIZE 
and DATA in the command message. On the other 
hand, TYPE values 07, 1A, 1B and 1F have such fields 
(states Waiting Size and Waiting Data in state B).  

 
Table  1. Mnemonics in Figure 3. 

Mnemonics Meaning 

EB9 Synchronism value 
rc Received. Indicates an event has happened  
eid Experiment identification  

tp, sz Auxiliary variables  
cksum Checksum  

x x = a or b or c or d 
a tp = 07 and (data = 00 or data = 01) 
b tp = 1A and (initial_address <= final_address) 
c tp = 1B and (address >= loading pointer) 
d tp = 1F and (data = 30 or data = 31 or data = 32 

or data = 33 or data = 3E or data = 3F or data = 
40 or data = 45 or data = 46 or data = 47 or data 
= 48) 

y type = 01 or type = 02 or type = 03 or type = 04 
or type = 05 or type 07 or type = 1A or type = 1B 
or type = 1F 

 
5. Results 
 

According to step (a) of the methodology, the 
software specification  was translated to PcML. A 
sample of the PcML specification follows: <State 
Name="A" Type="OR" Default="Idle">. Then, PcML 
was translated into a text file containing the C++ main 
program, whose sample is: ExpSci.createSonState 
("A",OR,"ReceivingCommand"); (step (b)). A different 
FSM for each scenario (columns Sc) of Table 2 was 
generated (step (c)). A scenario was created by 
assigning values to the command message fields. 

These scenarios shall be created in order to deal 
with the software behavior that is in conformance with 
the protocol specification as well as for situations 
where errors are introduced. For example, scenario 8 in 
Table 2 was created by assigning the following values: 
SYNC = EB9, EID = 2, TYPE = 1F, SIZE = 01, 
DATA = 32, CKS = 31 (correct value ). This is a 
normal scenario which deals with conformance aspect 
of the software. Figure 4 shows the FSM generated for 
scenario 8. 

On the other hand, scenario 4 was created with 
TYPE = 08. This is a non-specified value for the TYPE 
field so this scenario is related to the introduction of 
errors in the command fields. The idea of this paper 
was not to generate different FSMs for each different 
combination of the inputs but it was mainly to show 
how the methodology works. Table 2 shows test cases 
for all 9 scenarios resulting in 38 test cases.  



  

 
Figure 3. Statecharts modeling of the command recognition part of the  communication 

protocol. 
 

In Table 2, InSc means the amount of scenarios a TC 
belongs to. However, it is important to notice that as 
each scenario is a different FSM, some test cases are 
repeated in more than one scenario. This repetition can 
be explained by the fact some events occur according 
to the software specification and also due to errors 
regardless of a particular scenario. For example, 
consider test case A, in which event EB9 (B state) and 
event waiting timing expired[not in (Aborting)] (A 
state) occur. This test case is generated in all 9 
scenarios (Table 2). Event EB9 is the first one 
expected by the software in a entire command message 
and a timeout can occur in any transaction between the 
computers. Test cases from A to J are those created by 
assigning values, not defined in the protocol 
specification, to the command message fields and also 
by not transmitting the whole command message which 
results in a timeout in the implementation under test. 
Test cases K and L are those with input values as 
defined in the specification. 

A total number of 12 test cases generated were 
unique which implies in 31.6% of the total initially 
created. Although this number can indicate an 
excessive repetition of test cases, it is important to 
point out that there was not any excessive number of 
test cases generated. One could have used just the 
Condado tool by itself. In this case, the specification 

must be provided as a FSM. This is not an issue as such 
if the software is not too complex. Moreover, explosion 
of test cases frequently takes place and many of the test 
cases have a sequence of transitions that do not occur 
in the real implemented software. For instance, when 
the TYPE field is 1F, the protocol specifies that the 
SIZE must be 01 and DATA must be one of the options 
shown in event d (one of the component events of x) in 
Table 1. Condado combines all the transitions to 
generate test cases and a large number of test cases are 
generated. 

 
Table  2. Scenarios (Sc) X Test Cases (TC)  

TC Sc 
1 

Sc 
2 

Sc 
3 

Sc 
4 

Sc 
5 

Sc 
6 

Sc 
7 

Sc 
8 

Sc 
9 

InSc 

A x x x x x x x x x 9 
B x x x x x x x x x 9 
C x x x  x x  x x 7 
D x x      x  3 
E x       x  2 
F x         1 
G  x        1 
H   x       1 
I    x      1 
J     x     1 
K      x   x 2 
L        x  1 
Total 6 5 4 3 4 4 2 6 4 38 
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Figure 4 . FSM Generated for Scenario 8. 

Test case explosion can be avoided by a careful 
selection of what arcs to be pruned which requires 
some effort by the tester. PerformCharts, while 
converting Statecharts specification into a FSM, does 
not generate a blind “AND” product of the basic states 
within each parallel component. The generated 
machine is in fact the possible combination of 
configurations based on the events that are stimulated.  
Moreover, one or more arcs can be pruned to avoid 
generating a larger machine. One has to note that 
pruning of arcs has a serious drawback of not testing 
the entire machine. On the other hand, applications of 
test case generating methods are feasible on complex 
systems. 

In terms of execution, two errors were found in the 
Java version of the real  experiment software. The first 
one occurred when test case A was executed. After 
receiving an EB9, the software must start counting the 
time. In test case A, no additional  information is 
transmitted from OBDH after EB9. So the software 
implementation must indicate the occurrence of a 
timeout (waiting timing expired[not in (Aborting)] 
event triggered) but this  did not happen.  The second 
one is that, on purpose, a mutant version of the 
software was created so that it did not assume TYPE = 
01 as a valid specified value. Only one mutant with a 
single fault was created at this time. Test case K in 
scenario 9 was executed and detected this error.  

 
6. Conclusions 
 

Complex reactive systems are one of a kind where 
many intricacies have to be represented. Statecharts, 
originally created for representing real-time systems, 
have been adopted to represent and deal (analytically) 
with performance models resulting into PerformCharts. 

This paper presented an approach for automated test 
case generation using Statecharts as a modeling 
technique. Statecharts can provide hierarchy and 
parallelism and enable to model a complex system 
more realistically. The methodology described involve 
the use of PerformCharts and Condado to generate test 
sequences. The approach was applied on a simulated 

version of a satellite experiment software. The results 
were satisfactory. None of the test cases generated were 
meaningless. Moreover, there was no test case 
explosion. Although these conditions are not enough in 
order to guarantee a test case generation approach is 
successful they show a real improvement when 
compared with just the use of  the Condado as a 
standalone tool with a FSM specification. 

Implementation of a filter tool is required to identify 
and eliminate the repeated test cases in more than one 
scenario More scenarios will be derived and test cases 
will be executed to the IUT. Also, this approach will be 
applied in the entire software and not only in one of its 
components. The entire software of the experiment 
resulted in 13 pages of dynamic behavior modeling in 
Statecharts. 
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